4-4 Videos Guide

4-4a

Exercises:

• Find the Taylor polynomial $T_3(x)$ for the function f centered at the number a. Graph f and T_3 on the same screen.

4-4b

• Approximate f by a Taylor polynomial with degree n at the number a.

(b) Use Taylor's Inequality to estimate the accuracy of the approximation $f(x) \approx T_n(x)$ when x lies in the given interval.

(c) Check your result in part (b) by graphing
$$|R_n(x)|$$
. $f(x) = \sin x$, $a = \pi/6$, $n = 4$, $0 \le x \le \pi/3$

4-4c

• Use the information from the previous exercise to estimate $\sin 38^\circ$ correct to five decimal places.

4-4d

• Approximate f by a Taylor polynomial with degree n at the number a.

(b) Use Taylor's Inequality to estimate the accuracy of the approximation $f(x) \approx T_n(x)$ when x lies in the given interval.

(c) Check your result in part (b) by graphing $|R_n(x)|$.

$$f(x) = \ln(1+2x),$$
 $a = 1,$ $n = 3,$ $0.5 \le x \le 1.5$

4-4e

• Use the Alternating Series Estimation Theorem or Taylor's Inequality to estimate the range of values of x for which the given approximation is accurate to within the stated error. Check your answer graphically.

$$\cos x \approx x - \frac{x^2}{2} + \frac{x^4}{24}$$
 (|error| < 0.005)